Surfaces of Constant Curvature in the Pseudo-Galilean Space
نویسندگان
چکیده
منابع مشابه
Surfaces of Constant Curvature in the Pseudo-Galilean Space
We develop the local theory of surfaces immersed in the pseudo-Galilean space, a special type of Cayley-Klein spaces. We define principal, Gaussian, and mean curvatures. By this, the general setting for study of surfaces of constant curvature in the pseudo-Galilean space is provided. We describe surfaces of revolution of constant curvature. We introduce special local coordinates for surfaces of...
متن کاملClassification of Factorable Surfaces in the Pseudo-galilean Space
In this paper, we introduce the factorable surfaces in the pseudo-Galilean space G3 and completely classify such surfaces with null Gaussian and mean curvature. Also, in a special case, we investigate the factorable surfaces which fulfill the condition that the ratio of the Gaussian curvature and the mean curvature is constant in G3.
متن کاملClassification of Rotational Surfaces in Pseudo-galilean Space
In the present paper, we study rotational surfaces in the three dimensional pseudo-Galilean space G3. Also, we characterize rotational surfaces in G3 in terms of the position vector field, Gauss map and Laplacian operator of the second fundamental form on the surface.
متن کاملLinear Weingarten Rotational Surfaces in Pseudo-Galilean 3-Space
In the present paper, we study rotational surfaces in the three dimensional pseudo-Galilean space G3. Also, we classify linear Weingarten rotational surfaces in G3. A linear Weingarten surface is the surface having a linear equation between the Gaussian curvature and the mean curvature of a surface. In last section, we construct isotropic rotational surfaces in G3 with prescribed mean curvature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2012
ISSN: 0161-1712,1687-0425
DOI: 10.1155/2012/375264